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SUMMARY 
Steady two-dimensional transonic flow is calculated in cascades of compressor and turbine blades using a 
mesh of triangular finite elements. A velocity potential is used, the equations being solved by the Newton- 
Raphson technique. The resulting computer program is fast, and is shown to give good accuracy. Shock waves 
are well represented, provided they are not too strong. 

INTRODUCTION 

The aim of the work to be described in this paper is to calculate the steady flow in a cascade of 
compressor or turbine blades. The flow is assumed to be two-dimensional, except that a variation 
of the thickness of the stream surface will be allowed. The flow may be subsonic in some parts of the 
field, and supersonic in other parts, but will be assumed to be irrotational and isentropic, so that it 
is only possible to simulate shock waves with a small pressure rise across them. 

Since the governing equations are non-linear, it appears to be necessary to use a field method in 
which the region of interest is covered by a mesh and numerical techniques are used. The most 
usual approach is to use a mesh of quadrilateral elements generated by two sets of lines, one set 
being straight lines in a tangential direction, and the other set approximating to the streamlines of a 
flow through the cascade. There are numerous references to work calculating the steady flow this 
way: for example the time-marching technique of Denton.' 

The present work uses a mesh of triangular finite elements. This was chosen because it enables a 
large number of small elements to be packed into the regions of greatest interest, such as round the 
leading edges of the blades, with larger elements in regions where there is not much variation. The 
steady flow equations are then solved by the Newton-Raphson technique. This leads to a fast 
computer program but has the disadvantage that if a very large number of elements is used the 
computer storage requirement becomes very great. 

The method has been extended to deal with small unsteady perturbations of the steady flow, so 
that the blade vibration problem can also be treated, and it is proposed to report this extension in a 
later paper. Another reason for choosing the Newton-Raphson technique for the steady flow is 
that it fits well with the unsteady calculation, since the unsteady calculation looks like one more 
iteration in the Newton-Raphson technique with different boundary conditions and complex 
variables. 
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Whitehead and Grant’ have reported an earlier version of this work which is suitable for 
subsonic flow only. For supersonic flow this calculation becomes unstable. The calculation can be 
stabilized by using upwind densities, as has previously been found by many authors, for instance 
Deconinck and H i r ~ c h . ~  The supersonic flow program is called FINSUP. 

MESH GENERATION 

An example of a mesh used for a compressor cascade is shown in Figure 1. The mesh covers an area 
one blade spacing in height, with one blade profile in the middle, and extends finite distances 
upstream of the leading edge plane and downstream of the trailing edge plane. The mesh generator 
starts from a specification of a number of points round the blade profile, which may be more closely 
spaced in regions of greater interest. These are then associated with a number of points round the 
boundary (the ‘box’) and corresponding points are joined by ‘rays’ as illustrated in Figure 2. The 
rays are usually single straight lines, but in the inlet and outlet regions they consist of two straight 
lines. The space between the rays is then filled in by triangular elements which are built up in layers 
round the blade profile, like the skins of an onion, the space between two adjacent rays in each layer 
being divided into two triangles. It is desirable to make the elements as nearly equilateral as 
possible, and to smoothly blend changes in element size to give optimum accuracy and 
convergence characteristics. 

An important feature of the program is that the elements in the grid are renumbered (from the 
original construction) in order to reduce the bandwidth of the matrix involved in the flow 
calculation. 

If the blade has a finite thickness at the trailing edge, then a cusp is added to simulate the 
separated flow which will in practice occur behind the trailing edge. The ray from this to the middle 
of the exit plane is drawn at the specified mesh outlet angle: a jump in potential occurs across this 
line, which models the wake. 

In order to stabilize the calculation in supersonic flow it will be necessary to associate with each 
element an ‘upstream’ element. To do this accurately would require a knowledge of the direction of 
the steady flow, and this is not initially available. So the ‘upstream’ elements are assigned at the 
time of the mesh generation according to a rough rule. This is that for the regions between the rays 

Figure 1. Typical finite element mesh 
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BLADE 
SPACING 

Figure 2. Construction of mesh 

leading to the upstream and downstream faces, the flow is assumed to be along the channels 
between the rays. For the remaining regions, above and below the blades, the flow is assumed to be 
along the layers used in building up the elements. 

STEADY FLOW EQUATIONS AND BOUNDARY CONDITIONS 

The two-dimensional flow is assumed to be adiabatic, reversible and free from vorticity. 
Furthermore the fluid is treated as a perfect gas with no viscosity or thermal conductivity. It is 
therefore possible to define a velocity potential 4 which is continuous in the solution domain apart 
from a jump across the wake line. Stream-tube radius variation and blade rotation are neglected, 
but stream-tube height (h) changes are included. 

The differentia1 equations governing the flow are mass conservation 

a 
-(phu,) = 0 
dXi 

and energy conservation 

where the suffix 0 refers to stagnation conditions. The sound speed is given by 

C,T+ *u2 = C,To 

a2 = yRT (3) 
and hence 

since the flow is isentropic. Together with the velocity potential 

a4 
' d X i  

u. = -- ( 5 )  
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V 
Figure 3. Boundary conditions 

equations (1) and (4) form a set of non-linear equations for the two scalar functions p and 4. 
The boundaries of the domain are illustrated in Figure 3. On the blade surface, the condition of 

no flow through the surface gives niui = 0. This means that in the finite element discretization 
(discussed in the next section) the blade surface is just like another element with no flow in it. No 
extra terms are required by this boundary condition, and it is therefore sometimes referred to as a 
‘natural’ boundary condition. The cascade repeat condition gives, for corresponding points on the 
top and on the bottom of the domain, 

$TOP - $BOTTOM = vy 1 (6) 
where Vyl is the inlet tangential velocity and s is the blade spacing. In addition, the condition that 
any flow leaving the top of the domain must be balanced by flow entering the bottom is satisfied. 

The equations for the corresponding nodes on the top and bottom are added together to give an 
equation which is just like that for any internal node, except for the constant term on the right-hand 
side of equation (6). 

The ray from the trailing edge, corresponding approximately in position to the wake from the 
blade, has a jump in velocity potential across it. This jump is equal to the anticlockwise circulation 
round the blade, and gives 

A$ = 4 s  - 4 ,  = @,, - Vyl) = W T E  

Apart from this, the wake is treated like any other internal point, so that flow can cross the wake, 
but no flow is lost or gained. By making A 4  across the wake equal to A$ at the trailing edge, the 
Kutta condition is automatically satisfied when the exit velocity is subsonic. 

The choice of conditions which can be specified as input to the program requires some care. For 
supersonic inlet flow, when the cascade is not ‘spilling’, the inlet flow angle is determined by the 
blade geometry and inlet Mach number, so that the inlet flow angle is not a suitable input variable. 
For a choked cascade the flow is determined by the cascade geometry so that the total flow, or the 
inlet axial velocity, are also not suitable variables. The physical quantities which are effectively 
specified as input are therefore chosen as follows: 

(a) inlet tangential velocity, V,, 
(b) stagnation density, po 
(c) stagnation sound speed, a, 
(d) jump in potential between the bottom right corner of the mesh, and the bottom left corner of 

the mesh, 4BR - 4BL. 
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This last condition replaces the more physical condition of specified pressure rise through the 
cascade, which would determine the shock position for supersonic inlet flow of a real fluid with 
viscous effects and shock losses. For the idealized flow considered here, no specification of the inlet 
and outlet variables would fix the position of an in-passage shock in a cascade of Rat plates at zero 
incidence. However the application of condition (d) determines the position of the shock uniquely. 

In practice non-dimensionalization is carried out with respect to po and a,, and a scaled 
potential introduced which is zero at the bottom left and unity at the bottom right of the domain. 
This leaves as input the two variables 

p1= 4 . m M I a O  
p2 = vy l /uNOM (7) 

where uNOM = (&R - &j/As and As is the distance between the bottom left and bottom right 
corners of the box. This nominal velocity, uNOM, does not have much physical meaning, except in 
the case of uniform flow through a cascade of flat plates, when it corresponds to the actual velocity. 
Incompressible flow solutions are obtained by setting p ,  = uNoM/uo = 0. 

On the inlet face, the flow is matched to a linearized solution obtained by assuming that there are 
only small perturbations of the uniform flow far upstream. A similar treatment is applied on the 
exit face, but additional terms arise as a result of the jump in potential across the wake. Details of 
these inlet and outlet boundary conditions are not given here but are described by Whiteheads4 

FINITE ELEMENT FORMULATION AND ITERATIVE SOLUTION 

There are two aspects to the derivation of the discrete finite element equations corresponding to the 
differential flow equations given above. The first is to divide the solution domain up into elements 
and assume a prescribed variation of the unknowns over each element; the second is to obtain a 
series of simultaneous equations by multiplying the differential equation by each of a sequence of 
weighting functions, and integrating over the region. In the Galerkin method used here, the same 
‘shape functions’ are used for both purposes. The very simple assumption of a linear shape function 
will be adopted here. Figure 4 shows a triangular element, with nodes numbered 1, 2 and 3. A 
general point within the element may be defined by the area co-ordinates Z,, Z ,  and Z , ,  where 

Z ,  = A , / A , Z ,  = A,/A and Z ,  = A J A  (8) 
Here, A , ,  A, and A ,  are the areas shown, and A is the total area of the element. Since 

it follows that 
A1 + A 2  + A, = A 

z, +z, +z, = 1 

Therefore only two area co-ordinates are independent. 
1 

Figure 4. Area co-ordinates 
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The velocity potential d, is assumed to vary linearly within each element so that at any interior 
point 

d, = 41Zl+ 4ZZZ + 43z3 = 4fZl (9) 
where 2, is the shape function and d,[ gives the values of d, at the three nodes of the element. 
Contracted notation is employed here, so that summation over all three values of the repeated 
sufix 1 is implied. 

(10) The specific mass flow within the element is given by 

qi = phu, 
where 

Since the problem is two-dimensional, i only takes the values of 1 and 2, corresponding to the x and 
y directions. Some analysis shows that 

(12) 1 (Yz-Y,) (Y3-YJ (Y1-Y2)  

( ~ 3  - ~ 2 )  (xi - ~ 3 )  ( ~ 2  - X I )  

The equation of continuity ( 1 )  becomes 

In order to satisfy this as accurately as possible within the finite element approximation, the 
Galerkin technique will be used. This equation is therefore multiplied by Z,, producing three 
equations corresponding to the three values of 1, and integrated over the element: 

This may be written 

in order to shift the differentiation from q, to the 'well-behaved' shape functions. The first term may 
be transformed to an integral round the boundary of the element by Gauss' theorem giving 

[n,q,Z, ds - I q i  2 dA = 0 

where n, is the unit normal drawn outwards from the surface of the element. Now consider all the 
elements adjoining a node L, as shown in Figure 5. Of the above three equations, the one 
corresponding to node L is picked out, and all such equations for the elements adjoining L are 
added to give 

In the first term, niqi is the flow across the boundary of the element. The area co-ordinate Z, is 
zero over the sides of the element remote from L, such as AB. On a side such as AL, Z, varies 
linearly from unity at L to zero at A. This term therefore expresses the flow disappearing down the 
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E 
Figure 5.  Elements adjoining node L 

cracks meeting at L, weighted towards L. For the best representation of the continuity equation it 
must be put equal to zero. 

In the second term the integral is uniform over each element. Hence 

Figure 6 shows the situation at the blade surface where the boundary condition niqi = 0 is applied. 
The natural procedure is now to substitute for q i  from equation (10). This leads to a program 

which is entirely satisfactory in subsonic flow, and has been described by Whitehead and Grant.2 
But in supersonic flow the process becomes numerically unstable, and if there is a patch of 
supersonic flow covering more than a very few elements the results are totally unrealistic. In order 
to overcome this problem use is made of 'upwind' densities. This device is well known and has been 
used for instance by Deconinck and H i r ~ c h . ~  Equation (10) is modified to read 

qi = (vp* + (1 - v)p)uih (18) 
The * indicates an element upstream of the element under consideration and the artificial viscosity 
v (M)  will be defined in the next section. 

From equations (tl),  (17) and (18) 

az, az, c (vp* + (1 - v)p)$,--hA = 0 
elements axi axi 

In view of the relationship (4) between density and velocity, equation (19) is a non-linear 
equation for the unknown values of 4,. This will be solved by the Newton-Raphson technique. At 
any stage a current approximation to the solution is available which will be denoted by an overbar. 
The difference between this and the correct solution will be denoted by a prime, and it is assumed 

C 

Figure 6. Elements at blade surface 
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that these correction terms are small. Hence 

4=6+4’  
p = D + p ’  

qi = cji + 4: 

Neglecting terms of second and higher orders, the correction terms satisfy 

Hence 

Since the artificial viscosity is dependent upon Mach number, it is important to account for this in 
obtaining the perturbation to equation (19). 

dv dM y - 1 - 2  UjU> 
) f ’ = - - ~ ’ . = . -  dv (1 + T - M  )m 

dM du, dM 

where the derivative dv fdM is taken at constant stagnation sound speed. Hence 

Putting these results into the perturbation equation from (19) and rearranging gives 

where 

The dv/dM term is the additional term due to v varying with M. In the calculation of v and 
dv/dM, li;r is evaluated at the station (element) under consideration not at the upstream element as 
in some methods. The third term in equation (24) is the flow defect at node L for the current 
approximation, and is known. The functions K,, and K f  are also known, so that equation (24) is a 
linear set of equations for the unknown values of Cp,. These equations are solved by simple 
Gaussian elimination, without any row or column interchanges, but taking advantage of the fact 
that the bandwidth of the left-hand-side matrix has been substantially reduced by the nodal 
renumbering scheme. By analogy with structural problems, K , ,  and K f  will be referred to as 
stiffness matrices. The analogy is that load corresponds to flow defect, and structural deflection 
corresponds to velocity potential. 
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ARTIFICIAL VISCOSITY AND CONVERGENCE 

A survey of the literature indicates a variety of choices for v(M): 
Deconinck and Hirsch3 

v-max 0, 1--- M” , n-4  i i 3 I 
Deconinck and Hirsch,’ Jameson,6 Hafez, South and Murman7 

v=max jO,( I-$)) 

(iii) Akay and Ecer’ 

v = p e (  1 -$), M 3  1 

= O  M < I  

,LL = 0.3,0.4 or 0-6, and e is an integer which increases as one moves downstream from the 
sonic line in the supersonic region. 
Holst’ 

where p c  is the sonic density. 
There are several factors to be considered in the choice of artificial viscosity: 

(a) It must be high enough for stability of shocks and supersonic regions. 
(b) It must be non-zero at M = 1 for stability of the iteration scheme. 
(c) It should be as small as possible in subsonic regions for accuracy. 
(d) It should be ‘smooth’ to avoid problems with the Newton-Raphson iteration scheme. 

The role of artificial viscosity is to enable the use of the finite element method, which is an elliptic 
method, to solve a mixed elliptic/hyperbolic problem. It performs this feat by adding dissipation 
into the differential equation, or equivalently by biasing the scheme in the upstream direction. 

Various forms of artificial viscosity were tried in the program on a variety of test cases, and the 
following form finally adopted: 

v = v0 + v1 ( 1 - $), M 2 1 

v = VOM2Vi/Vo exp [I - /Z(M - l)’], M < 1 

There are two choices of artificial viscosity (or damping) available to the program user: 

Standard damping, vo = 0.3, v1 = 1.0, /Z = 20.0 

These expressions give continuity of v and dv/dM at M = 1. 

High damping, Yo = 04, v1 = 1.5, /Z = 1.0 

Figure 7 shows the variation of v with Mach number for these two sets of parameter values. The 
fact that v is non-zero for M < 1 contradicts the advice of many authors, e.g. References 3, 5-9. 
Furthermore v > 1 for some values of M ,  and this is contrary to the consensus of opinion. 
Numerical experiments have confirmed that (28) is a satisfactory choice of v for a range of test 
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Figure 7. Variation of artificial viscosity with Mach number 

problems. In order to enhance the convergence of the numerical scheme a large value of v is used 
initially and this is gradually refined to the values of (29) as convergence is approached (following 
Akay and Ecer*). 

High damping 

Initial values: vo = 1.0, vl  = 2.0, I = 1.0 
1st reduction: vo = 0.67, v1 = 1.58, I = 1.0 
2nd reduction: vo = 0.45, v1 = 1.5, I = 1.0 
3rd reduction: vo = 0.4, v1 = 1.5, I = 1.0 

Standard damping 

Initial values: vo = 1.0, v1 = 2.0, I = 20.0 
1st reduction: vo = 0.67, v1 = 1.58, A = 20.0 
2nd reduction: vo = 045, v1 = 1.25, I = 200 
3rd reduction: vo = 03, v1 = 1.0, A = 20.0 

Figure 8 indicates the rapid, if somewhat irregular, convergence obtained on a supersonic inlet case 
by using this technique. 

The initial guess used for the Newton-Raphson iteration is based on uniform flow from bottom 
left to bottom right of the solution domain. For high-turning turbine blades this is not a very good 
approximation and the program was run with a low inlet Mach number to generate a better initial 
flow. 

A further device has been used to stabilize the iterative scheme for difficult supersonic inlet cases, 
namely relaxation. Thus 

(30) -(n+ 1) = $0 + Ru;W ui 
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Figure 8. Typical convergence history 

0 < R < 1 is the relaxation factor. Convergence of the iterative scheme is judged by tolerances on 
the changes in velocity and potential, considering the maximum change over all elements. 

APPLICATIONS TO SUBSONIC AND TRANSONIC FLOWS 

The following values are typical of the geometries used in the applications below: 

39 
0.8 x chord 

Number of points around blade: 
Inlet and exit distances: 
Number of nodes: 300 
Number of elements: 490 

Figure 9 shows a comparison of FINSUP to a proven streamline curvature prediction method 
on a subsonic turbine stator, for a strictly two-dimensional flow. It can be seen that good agreement 
is obtained on this simple test case. 

Next a blade with a transonic flow is considered. Figure 10 compares FINSUP predictions with 
measured blade surface Mach number for this turbine blade. The peak Mach number is 
approximately 1.1 and the Figure also includes a contour plot produced by the finite element 
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Figure 9. Subsonic turbine test case 
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Figure 10. Comparison of FINSUP predictions with experimental data for ace blade 
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Figure 11. T7 comparisons with FINSUP 
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Figure 12. BGK supercritical test blade 
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program. (These contour plots are not very accurate owing to the interpolation procedures that are 
necessary. In particular they do not show an accurate repeat condition between top and bottom 
edges of these plots, whereas repeatability must in fact be exactly satisfied. Note that the 
calculations are performed in the domain of Figure 1, and that the blade-to-blade type domain is 
used merely for presentation of the Mach number contours.) A further comparison with 
experiment is shown for a different blade in Figure 11 for a range of exit Mach numbers and 
incidence conditions. The only significant discrepancy between experimental and predicted values 
is in a separated flow region where an inviscid method could not be expected to perform well. 

The BGK (Bauer, Garabedian and Korn'O) shockless supercritical blades are claimed to 
represent significant reductions in losses:'O.'l one obvious gain is that because they are so highly 
loaded, fewer blades are required and so a weight saving results. It is important to be able to analyse 
these blades in order to know whether or not they are sensitive to incidence changes and stream- 
tube height and radius effects. The aim here is to demonstrate that FINSUP is capable of treating 
such blades, with large supersonic patches and Mach numbers up to 1.2. Figure 12 shows the result 
of taking the geometry for the BGK test blade and calculating the flow using FINSUP. The slight 
discrepancy in the supersonic region is probably due to the very precise geometry definition 
required to give the 'correct' flow. Less than 50 points on the blade surface were used for the finite 
element calculation. A 3 per cent wake blockage was used in FINSUP to represent the open trailing 
edge of the BGK design: this was introduced by a linear reduction in stream-tube height over the 
last 30 per cent of blade chord. Thus there are two possible explanations for the discrepancy near 
the trailing edge: 

(1) The blockage is not the same as the local effect of an open trailing edge. 
(2) The finite element mesh is fairly coarse in this region. 

SUPERSONIC TNLET FLOW 

The first supersonic flow case discussed is for a cascade of flat plates. The geometry used is that of 
Verdon and McCune Cascade A,12 because this has been used for assessment of the unsteady part 
of the program also. The parameter values are: 

Stagger = 59,53" 
Space/chord = 0.7889 
Inlet whirl velocity/stagnation sound speed = 0.9936 

The steady flow solutions produced by FINSUP demonstrate the ability of the method to cope 
with supersonic inlet flow, and to predict 'shocks'. Figure 13 shows the effect on the solution of 
different amounts of artificial viscosity. Early versions of the program used fairly large constant 
values (e.g. v = 1 everywhere) and these led to a very smeared shock. Using the current version of 
FINSUP, with 'high damping' according to equations (28) and (29), the sharpness of the shock can 
be seen. 

The above results were for p1 = 0.9, giving a shock near to the pressure surface leading edge. As 
p1 is varied the shock will move: increasing p, drives the shock rearward and so loosely 
corresponds to reducing back pressure. Figure 14 shows the changes in inlet and outlet conditions 
as p1 changes. While the shock is within the passage no changes in M, ,  tll, M,, a, occur-these 
conditions being those of unique incidence. As the shock is driven out rearward uniform flow is 
approached. By reducing pl the shock can be made to stand off the blade pressure surface leading 
edge. 

The next case considered is a 9-57' camber double circular arc (DCA) compressor blade (with a 
flat pressure surface) which was tested at DFVLR13.'4 under a range of conditions. The flow 
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Figure 13. Effect of artificial viscosity on shock smearing 
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Figure 15. 9.57" DCA compressor at supersonic inlet 

conditions used in this comparison are MI = 1.05, cxl = 58", M ,  = 0-761, cx, = 49.5", h,/h, = 0.86 
(linear from leading edge to trailing edge), which are the same values used by Deconinck and 
H i r ~ c h . ~  M ,  and aI determine the inlet whirl and ,uI is then adjusted to match the experimental 
outlet conditions. This creates a problem because as ,ul ranges from 0.87 to 0.89, although the inlet 
and exit conditions hardly change, the surface Mach number and shock position alter significantly. 
Thus for this case there is a degree of ambiguity to the solution (as indeed for the flat plate case): this 
will only be resolved when a boundary layer and entropy increase at the shock are incorporated. It 
should be noted that the 14 per cent blockage allows FINSUP to match the experimental exit 
Mach number (isentropically), but the blockage is very much a global representation of the thick 
boundary layer behind the shock on the suction surface. 

With these limitations in mind, Figure 15 shows experimental data against FINSUP predictions 
for ,u, = 0.87 (which gives the shock in the correct position). Apart from the discrepancies behind 
the shock on the suction surface, the agreement is good, and those discrepancies can be attributed 
to boundary layer effects. Deconinck and Hirschs give theoretical results for this blade which are 
very similar to those produced by FINSUP. 

The final supersonic inlet example is a test blade devised by Ca1~er t . l~  The section corresponds 
to about 60 per cent blade height for the fan of a typical civil high bypass ratio engine. Figure 16 
shows a comparison between FINSUP and an (inviscid) time marching solution (based on 
Denton's method') computed by Calvert l 5  for a shock position near to the pressure surface leading 
edge. In order to obtain this solution by the finite element program it was found necessary to relax 
the iterative procedure using a relaxation parameter (R, equation (30)) of 0.5. The discrepancy 
between the two solutions on the pressure surface is because FINSUP has an isentropic 
calculation. The agreement on the suction surface is better than might be expected and there are 
two possible explanations for this. First the blade surface pre-shock Mach number calculated by 
FINSUP is slightly lower than the time-marching value, and this is countered by the fact that an 
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Figure 16. NGTE test blade with leading edge shock 

isentropic solution will give a stronger ‘shock jump’. Secondly, the finite element solution 
downstream of the shock may reflect more of an average of the preshock conditions, rather than 
that on the suction surface. 

DISCUSSION 

It is concluded that two-dimensional transonic flows in cascades can be predicted by FINSUP with 
acceptable accuracy. Furthermore the method is able to cope with blades with large supersonic 
patches, the so-called supercritical designs. For supersonic inlet flows with shocks the results are 
comparable with time-marching: the careful choice of artificial viscosity in FINSUP has led to a 
fairly robust method which does not exhibit shock ‘overshoot’ problems. 

It has been demonstrated that the program can calculate the flow in a cascade of flat plates 
operating like tip sections of transonic fan blades in which the flow is ‘spilling’ round the leading 
edge and the unique incidence condition does not apply. 

The program is fast enough to be interactive, owing to the use of the Newton-Raphson 
procedure (a full solution, including mesh generation and graphics and 14 iterations, taking 
typically 30 s cpu time on an IBM 370-168). The storage requirement is kept reasonable on account 
of the banded matrix techniques, each example given above using less than 20,000 values. 

There are several areas in which development of the method would improve its performance and 
broaden the range of application. 

(i) A more general variation of stream-tube height and the introduction of radius variation and 
rotation are essential for the method to be used on realistic quasi-3D flows. 
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(ii) Although the isentropic flow approximation is acceptable for mild shocks, as the pre-shock 
Mach number increases it becomes more desirable to allow for the entropy increase. 

(iii) The inclusion of a boundary layer would greatly enhance the program’s performance on 
many cases. 

The first of these three developments is reported in Reference 16. It is important to realize that 
the latter two would not only increase the accuracy with which flows are predicted; they would also 
remove the uncertainty over shock position exhibited by inviscid, loss free solutions. 
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